martes, 28 de abril de 2015

MAPAS DE KARNAUGH

sub4_3

MAPAS DE KARNAUGH


Otra manera de simplificar funciones es representándolas en mapas de Karnaugh. Esto es equivalente a resolver las simplificaciones por teoremas. Sin embargo, mucha gente considera que resulta más fácil visualizar las simplificaciones si se presentan gráficamente. Los mapas de Karnaugh pueden aplicarse a dos, tres, cuatro y cinco variables. Para más variables, la simplificación resulta tan complicada que conviene en ese caso utilizar teoremas mejor. Para efectos de clase, veremos las simplificaciones de dos, tres y cuatro variables.

MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH

El Álgebra de Boole, resuelve problemas que dependiendo del número de términos que tenía la función canónica, siendo el número de compuertas lógicas utilizadas igual al número de términos obtenidos MÁS UNO; por lo tanto, los circuitos obtenidos son de dos niveles de conmutación con un tiempo mínimo de retardo, pero que de ninguna manera es el más sencillo ni el más económico.

Los mapas de Karnaugh es uno de los métodos más prácticos. Se puede decir que es el más poderoso, cuando el número de variables de entrada es menor o igual a seis; más allá, ya no es tan práctico. En general, el mapa de Karnaugh se considera como la forma gráfica de una tabla de verdad o como una extensión del diagrama de Venn.

Antes de explicar cómo se utiliza el mapa de Karnaugh en la minimización de funciones, veremos cómo se obtiene el mapa. Esto nace de la representación geométrica de los números binarios. Un número binario de n bits, puede representarse por lo que se denomina un punto en un espacio N. Para entender lo que se quiere decir con esto, considérese el conjunto de los números binarios de un bit, es decir 0 o 1. Este conjunto puede representarse por dos puntos en un espacio 1; esto es, por dos puntos unidos por una línea.

No hay comentarios:

Publicar un comentario