martes, 28 de abril de 2015

CODIGOS

sub3_4

CODIGOS


CODIGOS BINARIOS

los sistemas digitales usan señales eléctricas para representar dos posibles valores o estados que asociamos con cierto o falso. Como ya vimos también, para expresar información en estos sistemas hacemos uso de los números binarios ya que con ellos podemos representar los dos estados estables de los sistemas digitales a través del 0 y el 1 (y que podemos usar una combinación de éstos para representar cualquier cantidad). Muy bien, pero los sistemas digitales electrónicos pueden ser usados para procesar información discreta de cualquier tipo ya sean números decimales, letras, colores, etc y es por ésto que en la mayoría de los casos se hace conveniente el expresar la información que se desea procesar de una forma que sea más manejable. Es aquí donde entran los códigos binarios. Como les dije en el tema pasado, al elemento mínimo de un número binario se le conoce como bit. Un bit no es más que un código binario que sólo puede representar los dos estados estables. Un bit es por definición un dígito binario. Si se quieren expresar un número de elementos de 2n se requerirán entonces n bits para expresar dicho número de elementos. Por ejemplo si se quieren representar 4 posibilidades se requerirán entonces 2 bits ya que 22 = 4 (y de hecho estas combinaciones son 00 01 10 y 11 que, fácilmente verificable, representan los números decimales del 0 al 3). Si se quieren representar 8 elementos entonces se requieren 3 bits ya que 23 = 8 (000, 001, 010, 011, 100, 101, 110 y 111, en decimal del 0 al 7). En resumen, con n bits se pueden representar 2n opciones que irán desde 0 hasta 2n – 1. Ahora bien, no siempre se requerirá expresar una cantidad exacta de una potencia de 2. Por ejemplo si queremos mostrar las posibilidades en los dígitos decimales requeriremos de 10 combinaciones. Por supuesto, tendremos que usar cuatro bits ya que con tres sólo podremos representar 8 de ellas. Con los cuatro bits tenemos un exceso pero lo que se hace es ignorar el resto de las combinaciones.

CODIGOS DECIMALES

Entre los códigos binarios tenemos algunos que se usan para representar dígitos decimales. Las formas para representar los números decimales con códigos binarios es muy variada y depende de la lógica que se use. El más usado de todos estos códigos es el BCD (por sus siglas en inglés de “Binary Coded Decimal” o “decimal codificado en binario”). En este caso se usa una relación directa para expresar los dígitos decimales. ¿Qué quiero decir con directa? Pues bien, que al convertir el número binario a decimal obtendrás el dígito decimal en cuestión. Por ejemplo para expresar el (0)10 usamos 0000, para el (5)10 0101 y para el (9)10 1001 (más adelante mostraré una tabla con todas las combinaciones). La forma de calcular el número binario para representar el dígito decimal viene dada por la fórmula explicada en el tema anterior pero para realizar un cálculo rápido recuerden que la carga del primer dígito binario representa 8, la del segundo 4, la del tercero 2 y la del cuarto y último representa 1. Por supuesto que en BCD no existen 1100, 1010, etc ya que éstas no muestran ningún dígito decimal. Otro ejemplo:

para representar el dígito decimal 6 en código BCD sería: 0110 ya que: 0 x 8 + 1 x 4 + 1 x 2 + 0 x 1 = 6

No hay comentarios:

Publicar un comentario